Niveau : Terminale D

Durée: 3h

PHYSIQUE-CHIMIE

Cette épreuve comporte quatre (04) pages numérotées 1/4, 2/4, 3/4 et 4/4. L'usage de la calculatrice scientifique est autorisé.

Exercice 1: (5 points)

Chimie (3 points)

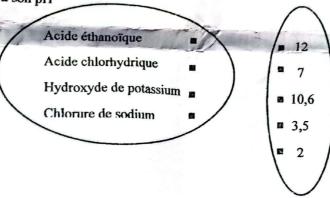
Toutes les solutions sont prises à la température de 25° C.

A. On dissout 1,32 L de chlorure d'hydrogène dans de l'eau distillée de façon à obtenir un litre de solution. Le volume molaire gazeux est $V_m = 24L. mol^{-1}$

1. La concentration de cette solution en ion hydroxyde OH est :

- a) $[OH^-] = 1.8 \cdot 10^{-13} mol. L^{-1}$
- b) $[OH^{-}] = 1.8 \ 10^{-12} mol. L^{-1}$
- c) $[OH^{-}] = 2.8 \cdot 10^{-13} mol. L^{-1}$

2. Le pH de la solution est :


a) pH = 1,20

b) pH = 2.26

c) pH = 1,26

Recopie le numéro de la proposition et à la suite écris la lettre correspondant à la bonne réponse : exemple 3 - b

B. Recopie les diagrammes ci - dessous et associe par un trait, chaque solution aqueuse de concentration $C = 0.01 mol. L^{-1}$ à son pH

Physique (2 points)

Ecris le numéro de l'affirmation et mets V si elle est vraie ou F si elle est fausse. Exemple: 5 - V

- 1- La force de Laplace est colinéaire au vecteur champ magnétique \vec{B}
- 2- La force de Laplace est orthogonale au conducteur rectiligne
- 3- La valeur de la force de Laplace est proportionnelle à la longueur de la portion de conducteur plongée dans le champ magnétique
- 4- La force de Laplace est toujours parallèle au plan formé par le conducteur et le champ magnétique

Exercice 2: (5 points)

Au cours d'une séance de travaux pratiques, un groupe est amené à montrer l'effet de dilution sur l'ionisation d'un acide Au cours d'une séance de travaux pratiques, un groupe de deux solutions monoacide S₁ et S₂ de même concentration faible. Une difficulté se présente à eux car ils disposent de flacons dont les étiquettes content de même concentration faible. Une difficulté se présente a eux car ils disposarions dont les étiquettes sont décollées. Ils savent que ces molaire volumique $C = 10^{-2} \ mol. L^{-1}$ contenues dans des flacons dont les étiquettes sont décollées. Ils savent que ces

monoacides sont l'acide éthanoïque CH3COOH et l'acide nitrique. monoacides sont l'acide éthanoïque CH₃COOH et l'acide avant et après les avoir diluées 10 fois. Les résultats sont Pour identifier les solutions S₁ et S₂, ils mesurent leur pH avant et après les avoir diluées 10 fois. Les résultats sont

consignés dans le tableau ci - dessous

Solutions	Sı	S ₂
PH initial	3,4	2
PH après la dilution	3,9	3

Tu es désigné(e) pour être le rapporteur de ce groupe

١.

- 1.1. Montre que la concentration molaire volumique de chacune des solutions diluées est $C' = 10^{-3} \ mol. L^{-1}$
- 1.2. Calcule le pH des solutions diluées en supposant que ces monoacides sont des acides forts.
- 1.3. Justifie que la solution S2 est l'acide nitrique.
- 1.4. Ecris l'équation bilan de la réaction de l'acide nitrique avec l'eau

- 2.1. Ecris l'équation bilan de la réaction de l'acide éthanoïque avec l'eau
- 2.2. Fais l'inventaire des espèces chimiques présentes dans la solution d'acide éthanoïque.
- 2.3. Calcule leurs concentrations molaires volumiques dans la solution S_1 de pH = 3,4

2.4.1. Donne l'expression du coefficient d'ionisation α de l'acide éthanoïque en fonction de C et de [CH₃COO⁻].

Montre que $\alpha = \frac{10^{-pH}}{C}$

- 2.4.3. Calcule α avant et après la dilution de l'acide éthanoïque.
- 2.4.4. Déduis l'effet de la dilution sur l'ionisation d'un acide faible.

Exercice 3: (5points)

Pour étudier une bobine avec ses élèves de terminale D, un professeur de Physique - Chimie, réalise deux montages. Il dispose de tout le matériel nécessaire au laboratoire. Expérience 1 :

Le professeur réalise le montage schématisé sur la figure 1 ci - contre Il règle alors la valeur de la résistance R du conducteur ohmique à R = r avec r la résistance interne de la bobine d'inductance L.

Les lampes L₁ et L₂ sont identiques.

Il ferme l'interrupteur K et constate que :

- Les deux lampes ne s'allument pas en même temps ;
- L'ampèremètre indique I = 0.5 A;
- Le voltmètre indique U = 5 V

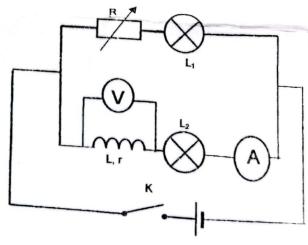
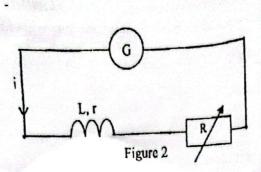
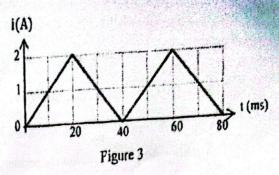




Figure 1

Expérience 2 :

Le professeur réalise le deuxième montage schématisé sur la figure 2 en branchant en série aux bornes d'un générateur G, une bobine (L,r) et le conducteur ohmique reglé à $R=100~\Omega$. le générateur délivre un courant d'intensité i(t) variable au

La bobine utilisée a une longueur $\ell = 40$ cm et elle comporte N = 2000 spires de rayon r' = 3,6 cm.

Données : $\mu_0 = 4.\Pi 10^{-7} \text{SI}$

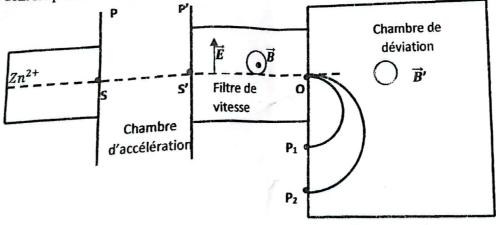
Il t'est demandé(e) de répondre aux questions suivantes

1. A partir de l'expérience 1 :

1.1.

gro.

- 1.1.1. Nomme le phénomène physique mis en évidence
- 1.1.2. Précise le dipôle qui en est responsable
- 1.2. Détermine la valeur de la résistance interne r de la bobine.
- 1.3. Montre que la bobine utilisée peut être considérée comme un solénoïde infiniment long.
- 1.4. Détermine la valeur du champ magnétique \vec{B} créé à l'intérieur de ce solénoïde.
- 1.5. Montre que l'inductance de la bobine est L = 0.05 H


2. A partir de l'expérience 2.

- 2.1. Détermine la f.é.m. e d'auto induction créée par la bobine pour 0 < t < 40 ms
- 2.2. Représente e(t) pour 0 < t < 80 ms. Echelle : 1 cm pour 10 ms et 1 cm pour 2,5 V.

Exercice 3: (5 points)

Au cours d'une séance de Travaux Dirigés, votre professeur de Physique - Chimie vous soumet à un exercice traitant le mouvement d'une particule chargée dans un champ magnétique uniforme : à l'intérieur d'une chambre d'ionisation, le métal

zinc est ionisé en ses isotopes. On produit alors les ions ${}^aZn^{2+}$ et ${}^bZn^{2+}$ de masses respectives m_1 et m_2 . Ces isotopes traversent ensuite trois zones (chambre d'accélération, filtre à vitesse et la chambre de déviation) avant d'être réceptionner par un écran dont les points d'impact sont respectivement P₁ et P₂. (Voir schéma)

Données: $m_1 = a.u$; $m_2 = b.u$; $u = 1,67.10^{-27} kg$; $e = 1,60.10^{-19} C$

NB: le poids est négligeable devant les autres forces

Etant élève de la classe, le professeur te désigne pour la rédaction de l'exercice.

Dans la chambre d'accélération :

Ces ions pénètrent dans la chambre d'accélération par le trou S avec une vitesse nulle ; ils sont accélérés sous l'action d'une Ces ions pénètrent dans la chambre d'accélération par le trou S avec tension positive $U_0 = V_P - V_P$, établie entre P et P. Ils parviennent au trou S qui les conduit vers le filtre de vitesse.

- Indique sur le schéma, le sens du vecteur chann électrostatique \vec{E} et de la force électrostatique \vec{F}_e entre les plaques P et P'
- Montre que les énergies cinétiques des particules sont égales. 1.2)
- Détermine le rapport $\frac{v_1}{v_2}$ en fonction de α et b. Calcule sa valeur au millième près pour $\alpha = 68$ et b = 76. 1.3)
- Calcule la valeur de la tension U_0 permettant d'obtenir $v_1 = 10^5 m. s^{-1}$. Donne alors la valeur de la vitesse v_1 1.4)

2) A l'intérieur du filtre de vitesse :

Les deux isotopes pénètrent ensuite à l'intérieur du filtre de vitesse avec les vitesses horizontales $\vec{v_1}$ et $\vec{v_2}$. Le faisceau Les deux isotopes perceutir. Les deux isotopes perceutir d'ions Zn^{2+} est soumis à l'action simultanée d'un champ magnétique uniforme \vec{B} perpendiculaire à la fois à $\vec{v_1}$ et $\vec{v_2}$ et un d'ions Z^{n-1} est soullis à V_1 et V_2 et V_2 et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme \vec{E} perpendiculaire à $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme $\vec{v_2}$ et $\vec{v_1}$ et $\vec{v_2}$ et un champ électrique uniforme $\vec{v_2}$ et $\vec{v_3}$ et $\vec{v_2}$ et $\vec{v_2}$ et un champ électrique uniforme $\vec{v_2}$ et $\vec{v_3}$ et $\vec{v_2}$ et $\vec{v_3}$ et $\vec{v_3}$ et $\vec{v_2}$ et $\vec{v_3}$ et des ions ${}^{a}Zn^{2+}$ soit, dans le filtre de vitesse, rectiligne et uniforme.

- Indique sur le schéma le sens de la force électrostatique et celui de la force magnétique
- donne la relation vectorielle entre ces deux forces pour que, dans le filtre de vitesse, le mouvement des ions 2.2)^aZn²⁺soit rectiligne et uniforme
 - Calcule la valeur du champ magnétique B.

3) Dans la chambre de déviation

Ces ions sélectionnés au point O pénètrent dans la chambre de déviation magnétique où règne un champ magnétique \overrightarrow{B} , perpendiculaire aux vecteurs vitesses des ions.

- 3.1) Soient P_1 et P_2 les points d'impact des ions sur l'écran. Calcule la valeur du champ B' pour $OP_1 = 2.10^3 mm$.
- 3.2) Détermine le rapport $\frac{OP_1}{OP_2}$ en fonction de α et b puis calcule la distance P_1P_2